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The basic logic of Null Hypothesis Testing 

(Fisher’s approach)
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Defining the null hypothesis
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Null Hypothesis Testing (NHT) begins by defining two hypotheses: the null 
hypothesis and the alternative hypothesis (or experimental hypothesis):

The null hypothesis. This states that there is no effect in your 
data (e.g., no difference between conditions in an experiment).

H0:

So let’s start with the obvious - as the name suggests, NHT focuses on the null 
hypothesis. In fact, the alternative hypothesis (or experimental hypothesis) 
doesn’t really factor into the mathematical steps of null hypothesis testing. 

The alternative hypothesis or experimental hypothesis. This 
is a hypothesis that states that there is an effect in your data 
(e.g., a difference between conditions). This is sometimes also 
called. Your book calls it HA, but you will also see it called H1.

HA or H1

This is counterintuitive. The alternative hypothesis is the one you care about. 
It is the one that is scientifically interesting. Your gut is going to make you 
want to learn things about the alternative hypothesis. That is natural. That 
means you are a scientist. But logic is not always intuitive.



It is all about falsification
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NHT uses the logic of falsification. In NHT, you seek to reject the null 
hypothesis. 

The null hypothesis. This states that there is no effect in your 
data (e.g., no difference between conditions in an experiment).

H0:

“Every experiment may be said to exist only in order to give 
the facts a chance of disproving the null hypothesis.” - Fisher 
(1966)

Ronald A. Fisher (1890-1962) was a British geneticist who 
developed the first coherent framework of NHT. 

To repeat - the goal of NHT is to reject the null hypothesis. NHT makes no 
statements about the alternative hypothesis (either disproving or proving). 
You should sear this into your brain.



The mathematical part of NHT
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The mathematical part of NHT has three steps:

Run an experiment to collect the observed data. Calculate a statistic from 
it, like the mean or a z-score (or others we will learn later like t or F).

1.

Assume that the null hypothesis is true, and generate all possible data 
sets that could arise (using the same sample size as your experiment). 
We summarize it as a distribution called the null distribution.

2.

data1 
data2 
data3 
…

Data 
Generator

(assumes H0)

Look up the probability of your observed 
data or data more extreme in the null 
distribution. This is a conditional probability.

3.

P(data | H0) =
observed data
generated data
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The logical part of NHT
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The mathematical part of NHT yields a conditional probability - the 
probability of obtaining the observed data or data more extreme under the 
assumption that the null hypothesis is true. We call this a p-value.

P(data | H0) =
observed data
generated data
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The logical part of NHT interprets the p-value.

If the p-value is sufficiently low, then you can conclude either:  

(i) the null hypothesis is incorrect, or 
(ii) a rare event occurred.

Interpreting p-values is actually a fairly philosophical act. We will 
start with Fisher’s philosophy, because he started NHT. His 
interpretation can be captured in a statement called Fisher’s 
disjunction (a disjunction is a statement with “or” in it):



Really thinking about it
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If the p-value is sufficiently low, then you can conclude either:  

(i) the null hypothesis is incorrect, or 
(ii) a rare event occurred.

Option 1 says the null hypothesis is incorrect. The 
idea is that if our observed data has a low 
probability, then maybe the hypothesis we used to 
generate the probability distribution is incorrect. 
We don’t expect low probability things to happen 
very often. So, when we see one, we should 
question whether we actually understand the 
universe correctly.
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Option 2 says that the null hypothesis is correct, and we just happened to 
observe a rare event. Rare events do occur. They just occur rarely. We just got 
lucky, and happened to see one.

Notice that these two are opposites - one says H0 is incorrect, the other says 
H0 is correct. Fisher’s disjunction says that we can’t know which one is true. 
We only know that one of the two is true.



Rejecting H0
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The obvious question is how low does a p-value need to be in order to reject 
the null hypothesis?

If p(data|H0), called the p-value, is sufficiently low, then you can 
conclude either: (i) the null hypothesis is incorrect, or (ii) a rare 
event occurred.

For Fisher, p-values are directly interpretable as the strength of evidence 
against the null hypothesis. This is because they are frequentist probabilities. 
So they have a very natural interpretation - they tell us how frequently we 
would expect our data or data more extreme if the null hypothesis were true.

Fisher wanted each scientist to decide when they would reject the null 
hypothesis. So, for Fisher, there is no correct answer to this. He did make the 
suggestion that a p-value less than .05 would probably be a good cutoff. And 
the field of psychology has generally followed that suggestion.

But, crucially, for Fisher, p-values are a continuous measure of evidence 
against the null hypothesis. So there is not much difference between p=.06 
and p=.05. There is no hard or fast cutoff that you can use. 



Does rejecting H0 mean that we proved HA /H1?
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It is tempting to say that we proved the alternative hypothesis (aka the 
experimental hypothesis). But science is about precision. So we need to be 
precise.

If p(data|H0), called the p-value, is sufficiently low, then you can 
conclude either: (i) the null hypothesis is incorrect, or (ii) a rare 
event occurred.

NHT doesn’t work with HA /H1. We never mathematically formulate an HA /H1. 
And none of the steps in the mathematical or logical portions of NHT make 
reference to HA /H1. Therefore we cannot draw any direct conclusions about it. 
Our conclusion is just that we reject H0.

But all is not lost. The logical implication of rejecting the null hypothesis is that 
some HA /H1 is likely correct. In other words, we have ruled out one hypothesis 
(the null hypothesis), so now we know that it will be more productive to 
explore alternative hypotheses. 

But it is important to remember that we did not test HA /H1 directly.



… or a rare event occurred.
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Don’t forget the other half of the disjunction.

If p(data|H0), called the p-value, is sufficiently low, then you can 
conclude either: (i) the null hypothesis is incorrect, or (ii) a rare 
event occurred.

Rare events do happen. They just happen rarely. For example, if the p-value of 
the observed data is .05, that tells us that data equal to or more extreme than 
the observed data will occur in around 1 out of 20 experiments over the long 
run.

There is no way to know if the null hypothesis should be rejected or if a rare 
event occurred. All we can do is interpret the p-value based on our best 
scientific judgment. This is just part of a broader issue in science - we can 
never know the truth. We can only use our best judgment based the evidence.



Failing to reject H0
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Though it is not stated directly in the disjunction, we have to consider what 
happens if the p-value is not low. Let’s say it is p=.36. What can we conclude?

If p(data|H0), called the p-value, is sufficiently low, then you can 
conclude either: (i) the null hypothesis is incorrect, or (ii) a rare 
event occurred.

We conclude that we have failed to reject the null hypothesis.

This probably sounds like a really clumsy phrase. And it is. But it is also 
precise. And science is about precision. 

You may be tempted to say that this proves the null hypothesis. But we 
cannot prove the null hypothesis in NHT because we assume it is true 
in our mathematical steps (the generation of the null distribution). You can’t 
prove something that is already assumed to be true. (And, also, NHT only 
endorses falsification!)



A brief note on ways to generate data under 
the null hypothesis
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The mathematical part of NHT requires 
generating the null distribution
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When you think of statistics, you probably think of math. The reason is that 
the mathematical step of NHT is a little complicated. Here it is again:

Assume that the null hypothesis is true, and generate all possible data sets 
that could arise (using the same sample size as your experiment). We 
summarize it as a distribution called the null distribution.

data1 
data2 
data3 
…

Data 
Generator

(assumes H0)
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The question is: How can we generate the hypothetical data under the null 
hypothesis? Remember, these aren’t real experiments. We aren’t actually 
running them. We couldn’t do that physically. We just need to know what 
would happen, hypothetically, if the null hypothesis were true and we ran all 
possible experiments. It turns out that there are two main methods of doing 
this - the intuitive way (simulating the data) and the less intuitive way 
(analytic methods using calculus).



The intuitive way - simulating the data

14

Living now in the 21st century, the obvious way to generate hypothetical data 
is to simulate it. We’ve already been doing that from time to time in this 
course. It means using a computer language, like R, to generate the data.

data1 
data2 
data3 
…

Data Generator

(assumes H0)
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We don’t focus on simulation methods in this course. But if you’d like to learn 
more about simulation methods, the words you want to search for are: 
randomization methods (sometimes called permutation methods) and 
bootstrap methods. Those are the two major approaches to simulating data 
within Null Hypothesis Testing.



The less intuitive way - analytic methods
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Null Hypothesis Testing was developed primarily in the first half of the 20th 
century (with Fisher doing the bulk of the work in 1920s and 1930s). 
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null distribution

Because that was before computers, simulation methods simply were not 
feasible for anything beyond a very, very small experiment. Otherwise 
scientists would spend all of their time calculating fake data for every 
experiment that they ran. So the founders of statistics had to be clever.

test 
statistics 

z, t, F,… 

Here is what they did: They discovered special statistics (single numbers that 
describe a sample), called test statistics, that had relatively invariant 
distributions when the null hypothesis is true. What “invariant” means is that 
the distributions of these statistics do not vary based on the scales of the 
measurements - height, stress, SAT scores, temperature of stars, etc.

This means that we can calculate the distributions once, print them in books, 
and use them over and over. It is a really clever solution!

relatively invariant



Why do we still learn analytic methods?
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Now that we do have access to computers, and can simulate data, why do we 
still learn analytic methods? And why do we learn them first?

Part of this is practical - so that you can connect with the literature that came 
before now. There is over 100 years of science that uses analytic methods. If 
we didn’t maintain analytic methods, we’d lose access to that knowledge!

But the deeper reason is conceptual. Analytic methods are not cheats or 
shortcuts. They reveal something deep about data sets and the properties that 
data sets have under the null hypothesis. 

In an intro course like this, we may not get to see that depth yet. This course 
builds the foundation. Just like any skill, or any academic discipline, we need 
to build the foundation before we can really see the full complexity. (For 80s 
nerds - we are waxing the cars and painting the fence before we can learn 
karate.)

But I want you to know that there is another layer to this that you can explore 
once you are finished with this course. I will try to point to it a bit when I can, 
and maybe at the end of the course we will have time to discuss the directions 
you can go next with statistics.



How to learn a new statistical test 

(This is pretty much what we will do over and over again as we explore 
NHT together)

17



How to learn a new statistical test
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What is the scientific question it attempts to answer? This tells us which 
kinds of questions we can apply it to.

What is the mathematical question it asks? This tells us the information it is 
going to give us to answer the scientific question.

What is the null distribution of the test statistic? These are well-known. We 
just need to know which one we are working with.

How is the test statistic calculated for our observed data? This is the 
calculation that we will need to perform. This is the math bit of statistics.

How do we compare the test statistic to the null distribution? There are really 
two answers - look it up in a book, or use a built-in R function. (I suppose you 
could simulate it yourself, but at that point, you might as well use simulation 
methods directly.)



Null Hypothesis Testing with the z-test 

(We’ve already seen this, we just need to make it explicit!)

19



The scientific question

20

The first thing to learn about any null hypothesis test is what kind of scientific 
question it can answer.

The z-test asks: Does our sample come from a known population, or does it 
come from a different population?

[our sample] [our sample]

Comes from known population Comes from another population

Notice that only certain scientific questions will fit: This has to be a 
question about one sample, and it has to be about something where we know 
the parameters of the population. (These are rare, but it is the simplest test, 
so we start with it!)
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The mathematical question
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The second thing to learn about any null hypothesis test is what kind of 
mathematical question it answers. It will always be a p-value in NHT. But it 
is important to notice exactly what the p-value is quantifying.

The z-test asks: What is the probability of obtaining our sample or one more 
extreme if it came from the known population. (This is a p-value.)

If our sample comes from the 
known population, the 
probability should be high.

If our sample comes from the other 
population, the probability that it is 
part of the known population should 
be low — notice the overlap is in the 
extreme tail of the known population.
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The null distribution for the statistic
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The third thing to learn about any null hypothesis test is what the null 
distribution is for the test statistics (z, t, F, etc). Here we are talking about z as 
a test statistic. So we need to figure out what the distribution of z is under the 
null hypothesis. 

Our null hypothesis is that the sample that we’ve observed comes from a 
known population. We can use the sample mean as our statistic, and convert it 
into a sample z-score.

So the null distribution would be all possible sample means from that known 
population. We’ve seen that before — it is called the sampling distribution 
of the mean.

So, our null distribution is the sampling distribution of the mean.
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The null distribution for the statistic
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But we can go a step further. We know that the sampling distribution of the 
mean is a normal distribution in many cases (specifically, when the population 
is normal, or when then sample size is >30). So our null distribution is a 
normal distribution.

This means that we can convert our null distribution to the standard normal 
distribution. So, when we use z as a test statistic, our null distribution is the 
standard normal distribution (so we can use table A1 or pnorm for p-values!). 
In other words, the distribution of the z-statistic is a standard normal 
distribution.
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The calculation of the (observed) test statistic
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The fourth piece of knowledge you need is how to calculate the test statistic 
from your sample(s). Luckily, we already know this one. We just didn’t talk 
about it this way. We are going to calculate the z-score for a sample mean.

z =
x ̄- µ
σx ̄

The example used in the book is SAT scores, which have a known population 
mean of 500 and standard deviation of 100 (this is specified by the company 
that creates the SAT).

… and remember:
n

σx ̄=
σ

In the example, someone collects a sample of 25 scores that have a mean of 
530. The question is whether this sample likely comes from the known 
population of SAT scores, or whether the sample comes from a different 
population (like the population of people really good at math). Plugging the 
numbers in, we get:

25
σx ̄=

100
= 20 z =

530 - 500

20
= 1.5



Compare the observed test statistic to  
its null distribution

25

The last piece of information we need is how to compare the observed statistic 
to its null distribution.

The tables in the appendix of our book. There are tables for each 
of the different test statistics that are covered in the book.

Built-in functions in R. R has functions for each of the test 
statistics as well.

Option 1:

Option 2:
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Whichever option you use, the 
procedure is roughly the same. You 
use the test statistic, in this case the 
z-score, to find the probability of 
obtaining that score or one more 
extreme (operationalized as the area 
under the curve of the distribution)!

And if you look up 1.5, the answer is p=.067



Putting it all together with another example
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Another standardized measure: “IQ”

27

IQ stands for “intelligence quotient”. It is typically measured through a battery 
of tests. There are a lot of controversies surrounding IQ measures, so I don’t 
want us to dive too deeply into them. But they are a good example for z-tests 
because they are a standardized measure (similar to SAT scores) — the 
population mean and standard deviation are known:
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Given that we know the 
population mean and the 
population standard deviation, 
we can use z-tests to evaluate 
any experiments that we run on 
IQ.

Population mean and sd:



The effect of practice of IQ tests
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A researcher has a hypothesis that practicing IQ tests will cause people to 
perform better on the test. The researcher recruits a sample of 25 participants. 
They bring each participant into the lab on 4 consecutive days. For the first 
three days, the participants take an IQ test as practice (a different test each 
day). On the fourth day, they take the critical IQ test. The researcher records 
the 25 values.
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What are we asking?

29

Let’s look at what we’ve done so far. We have a known population of IQ scores 
with a mean of 100 and a standard deviation of 15. We have selected a sample 
of 25 scores, and “treated” them with our condition — they practiced taking IQ 
tests.
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What we want to know is if it likely that our sample came from that population 
(= the treatment had no effect, so they still come from the general 
population), or if it is unlikely that our sample came from that population (= 
the treatment had an effect, such that we should now think of these people as 
coming from a different population - people who are better at IQ tests).



For NHT, we generate all possible experiments 
with sample size 25 under the null hypothesis

30

We know two ways to do this. The first is to simulate it. We can simply draw 
samples of size 25 from this population over and over. This is our null 
distribution:
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We could, if we wanted, stop there and simply look up our sample mean (106) 
in the null distribution that we just calculated. Modern computers would allow 
us to do that. We can use pnorm() with a mean of 100 and a standard 
deviation of 3, and get a p-value for our mean of 106.

Note that our null distribution is just the sampling distribution of the mean! 

µ = 100 
σ = 15/sqrt(25)

null distribution



For NHT, we generate all possible experiments 
with sample size 25 under the null hypothesis

31

We know two ways to do this. The first is to simulate it. We can simply draw 
samples of size 25 from this population over and over. This is our null 
distribution:
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But we also know an analytic 
shortcut. The null distribution is 
just the sampling distribution of 
the mean, and the sampling 
distribution of the mean is normal, 
so we can use the standard 
normal distribution instead.
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The analytic shortcut we can take is to 
calculate the z for our sample

32

This is what our z-test does. It is an analytic shortcut that shows us the z-
score of our sample relative to our known population without having to 
simulate anything:

So let’s plug in our numbers:

z =
x ̄- µ
σx ̄

… and remember:
n

σx ̄=
σ

z =
106 - 100

3
… and remember:

25
σx ̄=

15

So the z for our sample is 2!
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And then compare it to the known null 
distribution (in this case, the z distribution)

33

To complete the z-test, we just need to find our sample’s z in the null 
distribution:

z = 2

z =
106 - 100

3
… and remember:

25
σx ̄=

15

And then we ask the NHT question: What is the 
likelihood of observing our value (z=2) or one 
more extreme, under the null hypothesis (in the 
null distribution)?
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And the answer (using either approach) is 
p=.023

null distribution

null distribution



Then we can apply logic
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So far, we have only learned Fisher’s logic. Next time, we will learn Neyman-
Pearson’s logic. But for today, let’s apply Fisher’s disjunction to our results:

If p(data|H0), called the p-value, is sufficiently low, then you can conclude 
either: (i) the null hypothesis is incorrect, or (ii) a rare event occurred.
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That means either the null hypothesis is false 
(practice DOES impact IQ scores), or 
something very rare happened in our 
experiment (we just happened to sample 
people who are unnaturally good at IQ tests — 
from the tail of the null distribution).

For our question about the effect of practice on 
IQ scores, we found that our p-value is .023. 

null distribution



The z-test in practice!
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If we saw this on homework or an exam
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IQ stands for “intelligence quotient”. It is typically 
measured through a battery of tests. There are a lot of 
controversies surrounding IQ measures, so I don’t 
want us to dive too deeply into them. But they are a 
good example for z-tests because they are a 
standardized measure (similar to SAT scores) — the 
population mean and standard deviation are known:

Then plug in our numbers:

z =
x ̄- µ
σx ̄

… and remember:
n

σx ̄=
σ

z =
106 - 100

3
… and remember:

25
σx ̄=

15

We’d first remember our formula:

72  93  93  96  98  
99 100 101 101 102 
103 103 104 105 
107 109 110 113 
115 118 119 122 
125 126 127

scores:

x ̄= 106



If we saw this on homework or an exam

37

IQ stands for “intelligence quotient”. It is typically 
measured through a battery of tests. There are a lot of 
controversies surrounding IQ measures, so I don’t 
want us to dive too deeply into them. But they are a 
good example for z-tests because they are a 
standardized measure (similar to SAT scores) — the 
population mean and standard deviation are known:

z = 2

Then we’d look up our z in Table A1 
in the book, or use pnorm() in R:

72  93  93  96  98  
99 100 101 101 102 
103 103 104 105 
107 109 110 113 
115 118 119 122 
125 126 127

scores:

x ̄= 106
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p =.023

null distribution


